
J .  F h i d  Mech. (1991), V O ~ .  224, p p .  217-226 
Printed in Great Britain 

217 

Capillary-gravity waves produced by a wavemaker 

By L. M. HOCKING A N D  D. MAHDMINA 
Department of Mathematics, University College London, Gower Street, London WClE 6BT 

(Received 11 January 1990 and in revised form 17 August 1990) 

Surface waves in a channel can be produced by the horizontal motion of a plane 
wavemaker a t  one end of the channel. The amplitude and the frequency of the waves 
depend on both surface tension and gravity, as well as on the condition imposed a t  
the contact line between the free surface and the wavemaker. Some of the previous 
work on the generation of capillary-gravity waves has been based on the unjustified 
assumption that the slope of the free surface at the contact line can be prescribed. 
A more acceptable condition is one that relates the slope to the motion of the contact 
line relative to the wavemaker ; in this way the dynamic properties of the contact 
angle can be incorporated. The waves generated by a plane wavemaker in fluid of 
infinite depth and in fluid of a depth equal to that of the wavemaker are determined. 
An important reason for including surface tension is that in its absence the transient 
motion initiated by an impulsive start is singular ; when surface tension is included 
this singularity is removed. 

1. Wave production by wavemakers 
Waves on the free surface of a fluid in a gravitational field can be produced by the 

normal motion of a rigid plate immersed in the fluid. The displacement of the fluid 
by the plate leads to a deformation of the free surface, which propagates away from 
the plate. The wavemaker problem is that  of determining the characteristics of this 
propagating wavetrain, given the motion of the wavemaker. If we suppose that the 
wavemaker oscillates with a given amplitude and frequency, the steady state a t  large 
distance from the plate will consist o fa  plane wave with the given frequency, and the 
amplitude and phase of this wave are the quantities to be determined; this 
calculation was first performed by Havelock (1929). If we suppose that the fluid is 
in a channel of finite depth and the wavemaker is a t  one end of the channel, several 
different motions of the vertical boundary can be considered. For example, the whole 
of the plane wall can be made to  oscillate rigidly, either remaining vertical or being 
hinged a t  the bottom, or we could move only the top section of the boundary, the 
lower section being held a t  rest. The response of the fluid to motions with an  
arbitrary time-dependence, including the transient motion at the initiation of a 
harmonic oscillation, can be solved by means of a Laplace transformation. The 
solutions for a range of wavemaker velocities differing in their dependence on depth 
and time have been obtained by Faltas (1988). There is, however, a difficulty in 
determining the transient motion after an impulsive start, because an initial 
singularity in the slope of the free surface at the wavemaker is predicted. This 
phenomenon was described in an unpublished note by Peregrine in 1972, and is 
treated a t  length by Roberts (1987). He considered the transient motion for power- 
law motions of the wavemaker and concluded that the singularity could only be 
removed by starting the motion sufficiently smoothly. 
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The solutions so far described have ignorcd the presence of surface tension, which 
also acts to provide a restoring forcc on the free surface. The dispersion relation for 
waves controlled by the combination of gravity and surface tension is well known, 
and suffices to determines the properties of such capillary-gravity waves in thc 
absence of vertical boundaries. Since, however, the prescncc of surface tension 
increases the order of thc dynamic boundary condition on the prcssure at the free 
sur face, the problem of capillary-gravity waves in a horizontally bounded fluid is 
only closed when somc' statement has been made of the edge condition to be applied 
whhrrr the free surface and thc boundary intersect. The need for this cxtra condition 
was first pointed out by Evans (1968) in his discussion of thc reflection of 
capillary-gravity waves by a vertical barrier. The wavemaker problem with surface 
tension included was discussed by Rhodcs-Robinson (1971) who assumed that thc 
slope of the free surface at the edge could bc prescribed and varied in phase with the 
horizontal motion of the wavemaker. The transient waves produced by the initial 
motion of the wavemaker are the subject of a reccnt paper by Joo, Schultz & Messiter 
(1990). These authors concentrate on the motion induced by a plane wavemaker of 
the same depth as the fluid, and on an impulsive acceleration (ramp) and impulsive 
velocity (step). They specifically include dynamic-contact-angle effects in their 
analysis, allowing the varying slope of the free surface at the contact line to be a 
known but unspecified function of the time. Their results, howcver, are all for a fixed 
contact angle. For the ramp motion of the wavemaker they encounter no singularity 
in the frcc-surface elevation, which they determine for small values of both time and 
distance from the wavemaker. For the step motion they find that an initial 
singularity is still present, even though surface tension has been included. Thcy 
conclude that the correct formulation for small time and distance requires the full 
nonlinear frec-surface conditions. 

This work, in common with other attempts at describing the transient motion for 
capillary-gravity waves generated by a wavemaker, is unsatisfactory because it 
assumes that it is possible to prescribe what slope the free surface should have. In 
general, there is no mechanism by which the slope can be controllcd. The exception 
is when the contact angle rcmains fixed, which is a dynamically possible situation, 
valid in the limit in which there is no dynamic variation of the contact anglr, or when 
this variation is so small that it can safely be neglcctcd. Since i t  is known that the 
contact angle at a moving contact line between a fluid and a solid varies with the 
speed of the contact line, we can prescribc this variation and so allow the free surface 
to respond to the motion of the contact line relative to  the wavemaker. A condition 
of this kind has been used to determine thc amplitudes of capillary-gravity waves 
generated by the vertical motion of a plate (Hocking 1987a) and the reflection of an 
incident wave by a fixed plate (Hocking 1987 b )  and by a circular cylinder (Mahdmina 
& Hocking 1990). We suppose, for simplicity, that  the contact angle can vary about 
a value of 90", the variation being proportional to the velocity of the contact line 
relative to the boundary. Extreme cases of this condition include the possibility of 
orthogonal contact, as is present in the absence of surface tension, and of a fixed 
contact line with a necessarily varying contact angle. 

The wavemaker problems for capillary-gravity wavcs that are studied in this 
paper make use of this edge condition. We consider the particular case of a plane 
vertical wavemaker which is impulsively brought into a harmonic oscillation of small 
amplitude. We concentrate on two special cases: fluid of finite depth with the 
wavemaker extending from top to bottom of the fluid, and fluid of infinite depth with 
only the top portion of the vertical boundary of the fluid brought into motion. The 
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amplitude of the steady-state wavetrain is obtained, generalizing the results of 
Havelock (1929). More importantly, examination of the small-time solution shows 
that, when the postulated edge condition is employed, there is no singularity in the 
free-surface elevation or the slope a t  the wavemaker, even when it is started 
impulsively. It is not necessary to include nonlinear terms in the free-surface 
condition to arrive at an acceptable solution. 

2. Formulation and non-dimensionalization 
Consider inviscid fluid in a channel of depth d', with a wavemaker of immersed 

depth h' at one end of the channel. The wavemak2r is made to oscillate with 
frequency uf and with a small amplitude e' about its mean position. The portion of 
the end of the channel below the wavemaker is fixed. Surface waves of frequency u' 
in fluid of depth d have a wavelength 2x/k', given by 

d2 = (gk'+ ~ k ' ~ )  tanh k ' d ,  (2.1) 

where g is the gravitational acceleration and y the surface tension. We choose ilk' 
as the lengthscale for non-dimensionalization and ( g k ' - i  as the timescale. Velocities 
are scaled with e'(gk')i and the pressure is written in the form 

(2.2) 

where p is the density of the fluid and pa the pressure in the air above the channel. 
The horizontal x-coordinate is measured from the end of the channel and the vertical 
z-coordinate from the equilibrium free surface. The equations for small-amplitude 
waves with no variation across the width of the channel are satisfied by a potential 
q5 that satisfies Laplace's equation, with the horizontal and vertical velocity 
componen& and the pressure being given by 

p' = Po + P P '  + E'PSP, 

The bottom condition on q5 is 

- " = 0 on z = -d (d finite), % + O  as z+-m (d infinite), (2.4) az 3.2 

where d = k'd'. The motion is forced by the wavemaker, and, if its position is taken 
as iexp( - i d ) ,  the conditions on q5 a t  the end.of the channel are, for t > 0, 

2 = u e x p ( - i u t )  for O > z >  -h ,  - " = 0 for - h  > z > - d ,  
ax d X  

(2.5) 

where h = k'h' and 
u2 = ( l + K )  tanhd. 

Because the amplitude of the lateral displacement of the wavemaker is small, this 
condition can be applied at the mean position x = 0. 

The elevation of the free surface is equal to e'q(z, t) and the conditions at the free 
surface are 

(2.7) 

since we are assuming waves of small amplitude these conditions can be applied at 

8 FLM 224 



220 L.  M .  Hocking and D .  Mahdmina 

z = 0. The parameter K measures the relative importance of capillarity and gravity 
and is defined by 

ykf2  
K = - .  

PS 

The edge condition to  be applied a t  the intersection of the free surface and the 
wavemaker states that the slope of the free surface there is proportional to the speed 
of the contact line relative to the wavemaker. In  non-dimensional form this condition 
becomes 

If A = 0 the contact line does not move relative to  the wavemaker and if h = co the 
contact angle remains fixed a t  its static value of 90". This completes the formulation 
of the problem to be solved. 

The chosen form for the wavemaker velocity can be replaced by more general 
functions of time; it could also be allowed to  vary with the depth below the free 
surface. A similar analysis to that presented here can be performed to deal with these 
variations. The oscillation of the wavemaker begins a t  t = 0 and the complex form 
of its velocity allows for both an initial impulsive velocity and an impulsive 
acceleration by taking the real or imaginary part of the solution, respectively. 
Because the analysis takes different forms for finite and infinite fluid depth, we treat 
the two cases separately. 

3. Finite depth 
For fluid of depth d = h, the whole end of the channel a t  x = 0 is made to  move. 

We take a Laplace transform in t ,  with parame!er s, and indicate the transform of 
$ by d, for example. Then we can write $ = 41+42, where $2 satisfies the 
inhomogeneous condition (2.5) and the bottom condition (2.4). The value of is 
given by 

-fT 2( - l )n  
cos { k , ( z  + h ) }  exp ( - k, x), 

$1 = s + i c r F h k z ,  
where k, = (n + t )  xlh. (3.2) 

The value of $2 that satisfies (2.4) and null conditions on x = 0 has the form 

(3.3) 

The pressure associated with $1 is zero on the surface, and i can be found from the 
second part of (2.7) in the form 

coskxdk--K~&s) exp (-x/K$, 
d 

(3.4) 

where we have used the condition that 4 must be bounded at infinity. The slope of 
the free surface at  the contact line is equal to B(t) .  The second term can be written 
as a Fourier integral, so that 

j j = -  2BK1x cos kx dk. 
1+Kk2 (3.5) 
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From the first condition in (2.7) we find that 

C -exp ( - k, x) + kA tanh kh cos kx dk, 
* a m 2  

sq = - 
s+iu  hk, 

and this too can be written as a single Fourier integral in the form 

s4 = JOm ( k A + G G  a ) tanh kh cos kx dk. 

22 1 

(3.6) 

(3.7) 

When the two expressions (3.5) and (3.7) for 4 are equated, we find that d(s, k) can 
be written in terms of B(s)  in the form 

- 2 K s  A 2a (1+Kk2)tanhkh 
k 

(92+ai)A = --B- 
7t n:(s+ia) > 

where ui  = k ( l  +Kk2) tanh kh, a1 = u. (3.9) 

The edge condition (2.9) provides another equation linking d and B in the form 

I:(kd+&-) tanh khdk = Al?. (3.10) 

Hence we find that B can be determined from the equation 

(3.1 1)  
k tanh 

khdk 
= 2as2 tanh kh dk. 1 r(s+ia)Io k(s2+ui) 

Inverting both sides of the equation, we find that B(t) satisfies the following integral 
equation : 

AB(t) + 5 k tanh kh cos u,~B(t - 7 )  d7 dk 
n: 

]dk. (3.12) 
u; cos u,t - u2 cos at - ia(uT, sin ukt - a sin ut) 

u; - a2 

The slope of the free surface at  the contact line is equal to B(t) and the elevation of 
the free surface there can be found by inverting @Is,  so that 

q(0, t )  = h B(7)d~ .  L (3.13) 

The transient motion introduced by the initial motion of the wavemaker is most 
easily found by considering (3.11) for large values of s. We find that, for finite A, 
B = O(sdlns), so that B(t) = O(t4lnt) as t + O .  The fixed-contact-angle case is given 
formally by h = co and then B(t) = 0. The initial free-surface elevation can be found 
from (3.13) when h is finite, and q(0, t )  = O(hti1nt). For A = 00 we can find /\B from 
(3.11) and then (3.13) shows that, in this case, q(0, t )  = O(t1nt). It follows, therefore, 
that the edge condition used here does not introduce any initial singularity in either 
the free-surface elevation or slope at  the contact line. 

8-2 
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The solution for large t is dominated by the contribution from the pole a t  s = -ia. 
At this value of s the denominators of the two integrals in (3.11) become zero a t  
k = 1, and the contour for both integrals with respect to k must be indented to lie 
below this singularity, since the contour in the s-plane must lie to the right of -iu. 
Hence 

(3.14) 

The quantity q introduced in this expression is proportional to the group velocity of 
surface waves of frequency u and is defined by 

2h( 1 + K )  
sinh 2h 

Q =  1+3K+ 

The quantities J1 and J2 are integrals defined by 

a, k tanh kh 
dk 9 

dk. 
( k 2 -  1 )  tanh kh 

(3.15) 

(3.16) 

(3.17) 

Note that we take the principal value of the integral J1 but that the integrand in 
J, is not singular. 

The value of 7 for large t and large x can be found from (3.4) and the dominant 
contribution comes from the pole at k = 1 in the value of d given by (3.8), from which 
we see that, as k + 1,  

1- A( t ,  k) - - (3.18) 

In this way we find that, after the transients have disappeared, the wavemaker 
produces a wave whose elevation a t  large distance from the wavemaker has the form 
R exp {i(x - at)}, where 

(3.19) 

The free-surface elevation a t  the wavemaker in the steady state can be found from 
(3.11) and (3.13) and has the form 

(3.20) 

The evaluation of (R(, the amplitude of the wave generated by the wavemaker, and 
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FIGURE 1 .  The amplitude of the wave generated by a wavemaker of depth h in fluid of depth h, 
when h = 1. The limiting values as h+m are also shown. 
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FIGURE 2. The amplitude of the surface elevation at the wavemaker for the same conditions 

in figure 1.  
as 

of q(0,t) are straightforward numerical tasks. Some numerical values of these two 
quantities as functions of A for h = 1 and for three values of K are displayed in 
figures 1 and 2. The wave amplitude decreases monotonically as K increases. Each 
curve has a shallow minimum as a function of h and approaches its limiting value as 
A +OO from below. It should be remembered that, when A is finite and non-zero, there 
is some energy dissipation a t  the wavemaker which may account for the dip in the 
amplitude of the generated wave. The surface elevation at the wavemaker (figure 2) 
is a monotonic increasing function of A and also decreases as K increases. 
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4. Infinite depth 
When the fluid is of infinite depth, with a boundary a t  x = 0 of which the top 

portion, of depth h, is the wavemaker, the analysis can proceed in a similar fashion 
to that for a finite depth of fluid. A suitable form for q51 that satisfies the forcing 
condition (2.5) is given by 

sin KZ exp ( - K X )  dK 
’1 = n(s+ia)  2a S”l-cosKh K2 

The pressure on the free surface from this part of the solution vanishes, and the 
vertical velocity Gl there is given by 

w1 = exp ( - K X )  dK, 

which can also be written as a Fourier integral in the form 

The appropriate form for q52 is now 

q52 = j: A(s, k) cos kx ekz dk. (4.4) 

Following the same steps as in the finite-depth case, we arrive at an equation for B 
to correspond to  (3.11), namely 

where now 
a: = k(l+Kk2), a2 = 1+K. 

The transient motion near the contact line has the same form as in the finite-depth 
case, since the integrals in (4.5) for large s are similar to those in (3.11). For large t ,  
we can determine the wave generated by the wavemaker in the same way as before 
and we find that the complex amplitude of the wave, denoted by R ,  is now given by 

where q’ = 1 + 3K. This expression for R is very similar to that in the finite-depth case 
given by (3.19), but the integrals are now defined by 

Ji  = loa dk, (4.8) a; - c r 2  

which is a principal-value integral, and by 

k2-k12 
dk, (4.9) 

k’2 = ~ (4.10) 

k( a: - a2) 
1 - e-kh 

1 ---h ‘ 

I J; = 

where 
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FIGURE 3. The amplitude of the wave generated by a wavemaker of depth h = 1 in fluid of 
infinite depth. 
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FIGURE 4. The amplitude of the surface elevation at the wavemaker for the same conditions as 
in figure 3. 

The free surface elevation a t  the wavemaker is given by 

in 
Af.7 
K 

q(0, t )  = e-iut - (1 - e&) (4.11) 

Numerical values of IRI and of q(0, t )  as functions of h for h = 1 and for various values 
of K are displayed in figures 3 and 4. The main features are similar to those of the 
corresponding results for the finite-depth case shown in figures 1 and 2. The minima 
of the wave amplitudes are somewhat more pronounced. 
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5. Conclusions 
Two main results have been established in this paper. It has been shown that 

capillary-gravity waves generated by a wavemaker can be predicted from the known 
motion of the wavemaker, provided an appropriate edge condition is applied, and 
without assuming a prescribed slope of the free surface a t  the contact line. The 
special cases of a fixed contact angle and a contact line fixed on the wavemaker have 
been included. The solutions have been given for a particular motion of the 
wavemaker, namely an impulsively started harmonic oscillation, and the velocity of 
the wavemaker has been uniform over the immersed part of the wavemaker. 
Extensions to other time variations and to depth-dependent velocities can easily be 
made. 

The second result has been to  show that, with capillarity and an appropriate edge 
condition, the transient motion after an impulsive start does not introduce a 
singularity in either the position or the slope of the free surface. It is not necessary 
to ensure that the initial motion of the wavemaker is sufficiently smooth, nor do we 
need to include nonlinear effects to remove the singularity that occurs when surface 
tension is neglected. 
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